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In high-Reynolds-number two-dimensional turbulence with a −5/3 power-law energy
spectrum, the clustering of inertial particles reflects the clustering of acceleration
stagnation points for all particle relaxation times smaller than the integral time
scale T of the turbulence. Acceleration stagnation points and small inertial particles
on these points are swept together by large-scale motions. In synthetic turbulence
where there is no sweeping and acceleration stagnation points do not cluster, inertial
particles do nevertheless cluster as a result of the repelling action of persistent velocity
stagnation-point clusters. This repelling action has a negligible effect on the clustering
of inertial particles in the presence of acceleration stagnation points clustering.

1. Introduction
In many environmental, geophysical and industrial processes, inertial particles

or droplets interact with turbulent flows to generate complex clustering patterns
and concentration fluctuations which can, via an agglomeration process, lead to
enhanced precipitation in clouds and powders in the chemical and pharmaceutical
industries. Fluctuations in particle concentrations and clusters are also responsible
for large variations in the efficiency of various industrial processes and characterize
air pollution in cities and elsewhere.

Here, we consider small aerosols or droplets (e.g. cloud droplets) in gases subjected
to linear Stokes drag. Gravity is ignored because the central concern in this paper
is the clustering of identical inertial particles. The particles/droplets are assumed
spherical with a radius a smaller than the smallest length scale of the turbulence, a
density much larger than that of the ambient fluid and a particle Reynolds number
much smaller than 1. The equation of motion of such particles is approximated well
by (see Maxey & Riley 1983)

d

dt
v =

1

τp

[u(xp, t) − v(t)] (1)

where v(t) is the velocity of the particle/droplet at its position xp(t) at time t , u(x, t)
the fluid velocity field, τp = 2ρpa2/(9µ) the particle relaxation time, ρp the particle’s
mass density and µ the surrounding fluid’s dynamic viscosity. We also assume that
the particles do not significantly affect the fluid turbulence and that they are dilute
enough not to interfere with each other.

Recent results on inertial particle clustering obtained with two-dimensional and
three-dimensional direct numerical simulation (DNS) have been reported by Boffetta,
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De Lillo & Gamba (2004) and Collins & Keswani (2004). In the present paper, the
emphasis is on high-Reynolds-number turbulence with well-defined power-law energy
spectra, which is why we concentrate on two-dimensional turbulence. However we
attempt to interpret particle clustering in specific stagnation-point terms which may
also be valid in three-dimensional turbulence, though we leave three-dimensional
turbulence for future study. We simulate two-dimensional inverse-energy-cascading
statistically homogeneous turbulent velocity fields u(x, t) by DNS following the
method detailed in Goto & Vassilicos (2004; referred to as GV hereafter) which gives
a well-defined −5/3 power-law energy spectrum. We also simulate two-dimensional
statistically homogeneous turbulent-like velocity fields with a −5/3 power-law energy
spectrum by kinematic simulation (KS) (Fung & Vassilicos 1998; referred to as FV
hereafter). Instead of Reynolds numbers, we will be referring to outer- to inner-length
scale ratios L/η where L is the integral length scale in our DNS but the length scale
corresponding to the smallest wavenumber in our KS and η is the small-scale forcing
length scale in our DNS but the length scale corresponding to the small-scale end
of the power-law energy spectrum in our KS. The corresponding outer- to inner-
time scale ratio is T/τη. Inertial particles are characterized by their Stokes number
St = τp/τη. In all our simulations, St � T/τη.

2. Brief details of simulations
Full accounts of our simulations can be found in GV for the two-dimensional

DNS and in FV and § 6 for the two-dimensional KS. Here we just state that we are
experimenting with two-dimensional DNS turbulence that has a well-defined k−5/3

energy spectrum over a broad range of scales with L/η = 30 (T/τη = 25) by using
40962 grid points (run D in GV); and that our KS velocity fields have power-law
energy spectra E(k) ∼ k−5/3 in the range of wavenumbers 2π/L to 2π/η and no energy
outside this range. The time dependence of the KS velocity fields is determined via

the frequency ω(k) = λ
√

k3E(k) where λ is a dimensionless parameter controlling
the intensity of the time dependence of the fluid velocity. L/η = 103 (except when a
dependence on L/η is sought) and T/τη = O(100).

The one DNS check of a L/η scaling in § 4 is made with the following two-
dimensional DNS velocity fields from GV: run A, 5122, L/η = 6.3 and T/τη = 10;
run B, 10242, L/η = 10 and T/τη = 13; run C, 20482, L/η = 19 and T/τη = 19; and
run D above.

3. Clustering of inertial particles
Our DNS visualizations show that inertial-particle position fields starting from

initial uniformity develop well-defined near-empty spaces as time progresses (see
figure 1). It is striking that the locations of these near-empty spaces at given integration
times are the same for all Stokes numbers. What differs from one Stokes number
to another is the size of these regions, the average size of which increases with
increasing Stokes number (see Goto & Vassilicos 2006 for quantitative details and
also Falkovich, Fouxon & Stepanov 2003). All these observations are valid for any
integration time that is long enough in comparison to τp .

In approximate agreement with the three-dimensional DNS of Collins & Keswani
(2004), we find 〈|ω|2〉p/〈|s|2〉p ≈ 1 for 0.1 < St < 1 in our two-dimensional DNS
(ω and s are the vorticity and the strain-rate tensor respectively and the average
operation 〈. . .〉p is taken over Lagrangian points on all particle trajectories at a given
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(a) (b) (c)

Figure 1. Particle distributions in two-dimensional DNS turbulence for three different Stokes
numbers; (a) St = 0.1, (b) St = 0.8 and (c) St = 6.4. The entire simulation domain (about
27L in size) is shown and each black dot represents an inertial particle.

time). For St > 1 we find 〈|ω|2〉p/〈|s|2〉p ≈ 2. This value 2 might suggest spatial
uniformity because, in statistically homogeneous turbulence, 〈|ω|2〉/〈|s|2〉 = 2 where
the average operation 〈. . .〉 is taken over all space. However, such uniformity is
not observed in our visualizations of spatial distributions of inertial particles (see
figure 1c). Furthermore, in the case of figure 1(c), where St = 6.4, as in all cases
with large enough values of St , 〈|ω|2〉p = 〈|ω|2〉. Hence, the generation of near-empty
spaces cannot be fully understood in terms of inertial particles escaping high-vorticity
regions because near-empty spaces also appear when St > 1.

4. Acceleration stagnation points
Nevertheless, we do expect the clustering of inertial particles to be determined by

some sort of eddying action even though the statistics of vorticity and strain-rate
tensor fail to fully correlate with this clustering. ‘Eddies’ are an undefined concept, so
here we focus attention on the stagnation points of the fluid velocity field u(x, t) and
of the fluid acceleration field a(x, t). In this, we follow the approach of FV, Davila &
Vassilicos (2003), GV, Goto et al. (2005) and Osborne et al. (2006) who showed that
velocity stagnation points have an impact on turbulent pair diffusion by virtue of
the strong curvature of streamlines in their vicinity as they turn out to be persistent
enough in time in a statistical sense which they define. Here we discuss how the
statistics of stagnation points (both zero-velocity and zero-acceleration ones) can also
have an impact on particle clustering.

Acceleration stagnation points, i.e. zero-acceleration points, might be thought of
as points at the centre of vortices or between them. In figure 2 we visualize the
spatial distribution of zero-acceleration points and the spatial distribution of inertial
particles (the zero-acceleration points and the zero-velocity points in § 7 are found
using a tested Newton–Raphson iterative method as in GV). The remarkable spatial
correlation which exists between these two spatial distributions is striking. The initial
distribution of inertial particles was set uniform in space, and the snapshots in figure 2
have been obtained at a time long enough compared to τp . In fact, any such long
time presents the remarkable spatial correlation shown in figure 2. As evidenced by
results such as those in figure 1, the near-empty spaces characterizing the clustering of
inertial particles are at the same places for different Stokes numbers but with different
sizes. Hence, the clustering of zero-acceleration points determines the clustering of
inertial particles but the Stokes number determines the characteristic size of the
largest near-empty regions generated by the clustering.
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(a) (b)

Figure 2. Distribution of (a) inertial particles (St = 1.9) (represented by black dots) and
(b) zero acceleration points (represented by black dots). Two-dimensional DNS. Box size is
about 4L.

We now present a property which is particular to the acceleration field and which,
as we argue in the remainder of this paper, is closely related to the clustering of
zero-acceleration points and of inertial particles. Generalizing the approach of Goto
et al. (2005) and Osborne et al. (2006) to zero-acceleration points, we define these
points sa(t) by a(sa(t), t) = 0, their velocity by V a ≡ (d/dt)sa(t) and write

D

Dt
a + (V a − u) · ∇a = 0 (2)

at these points, where D/Dt is the Lagrangian time derivative following fluid elements
and u is the fluid velocity at sa(t) at time t . Assuming that (V a − u) and ∇a are
statistically uncorrelated, we deduce that

〈|V a − u|2〉1/2 ∼
〈∣∣∣∣ D

Dt
a

∣∣∣∣
2〉1/2

τ 2
η (3)

where we reasonably assume Kolmogorov scaling for acceleration gradients. Such
scaling can be applied to (D/Dt)a and implies that 〈|(D/Dt)a|2〉1/2 ∼ (u′3/L2)(L/η),
where u′ is the r.m.s. turbulent fluid velocity, which in turn implies

〈(V a − u)2〉1/2 ∼ u′(L/η)−1/3. (4)

The important consequence is that 〈(V a − u)2〉1/2/u′ → 0 as L/η → ∞, meaning
that in the limit of high Reynolds numbers, zero-acceleration points move with their
local fluid velocity u. This conclusion is valid for any constant-acceleration point, not
only zero-acceleration points, and can be seen as a quantitative formulation of the
Tennekes sweeping hypothesis which states that energy-containing turbulent eddies
advect small-sale dissipative turbulent eddies (Tennekes 1975). The scaling relation
(4) is validated by our two-dimensional DNS (see figure 3; V a in the left-hand side
of (4) was calculated by inverting (2) at zero-acceleration points).

For St � 0.3 (see Falkovich & Pumir 2004), v ≈ u − τpa and (d/dt)v = (u − v)/τp

so that an inertial particle at a zero-acceleration point moves, on average, with this
zero-acceleration point when L/η 
 1 (see equation (4)) because they both move,
statistically, approximately with the same velocity u. Furthermore, the acceleration
(d/dt)v of an inertial particle at a zero-acceleration point is zero, thus reducing the
particle’s ability to escape from the zero-acceleration point. Instead, inertial particles
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Figure 3. (a) R.m.s. value of (V a − u)/u′ as function of L/η in DNS. (b) R.m.s. value of
V a/u

′ as function of L/η in KS with λ = 0.5. Dotted lines indicate −1/3 power law.

at points with high acceleration values readily move away from such points. Zero-
acceleration points are therefore ‘sticky’ for inertial particles, whereas high-acceleration
points are repellent (in the sense that particles at zero-acceleration points remain in
their vicinity (while moving with them) for much longer than particles remain in
the vicinity of a given high-acceleration point). This conclusion has been reached for
small Stokes numbers but computational results such as those of figures 1 and 2
suggest that it might be valid for a wide range of Stokes numbers all the way up
to T/τη, and in fact for an increasing portion of space as Stokes number increases.
Indeed, at points where the local time scales of the fluid flow are very much larger
than τp , the particle may be considered as a fluid element, so that v ≈ u irrespective
of a. The different values of v for different local values of a can only occur where τp

is not so much smaller than the fluid flow’s local time scales. The larger the Stokes
number, the larger the portion of space where fluid acceleration differences may have
an impact on particle velocities.

The previous paragraph’s argument (further expanded and clarified in Goto &
Vassilicos 2006) may go some way in explaining why the spatial clusterings of
acceleration stagnation points and of inertial particles are so well correlated.

5. Pair correlation functions
To measure clustering we use pair correlation functions which are simply related

to the radial distribution function (Sundaram & Collins 1997) and the clustering
index which is popular in analyses of observational data of atmospheric clouds
(Kostinski & Jameson 2000; Kostinski & Shaw 2001; Shaw, Kostinski & Larsen
2002). The use of the pair correlation function is based on the correlation fluctuation
theorem (Landau & Lifshitz 1980). This theorem states that if a grid of spacing r is
superimposed on a spatial distribution of points, then the average pair correlation
function m(r) ≡ (1/r)

∫ r

0
m(r ′) dr ′ is given by

m(r) =
〈(δN )2〉r

〈N〉2
r

− 1

〈N〉r

(5)

where N is the number of points in each box, 〈N〉r the average number of points
over all boxes and 〈(δN )2〉r = 〈(N − 〈N〉)2〉r (where the average is taken over all
boxes of size r). To educe average pair correlation functions of spatial distributions of
inertial particles, zero-velocity points and zero-acceleration points from our turbulence
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Figure 4. DNS pair correlation functions m(r) of (a) inertial particles (St = 0.4), (b)
zero-acceleration points (�) and zero-velocity points (�) and (c) inertial particles (St = 1.9, �)
and zero-acceleration points (�).

simulations we use this theorem and effectively calculate the right-hand side of (5)
which is the clustering index divided by 〈N〉r . This right-hand side is zero for Poisson
spatial distributions. A power law m(r) ∼ r−I is an indication of a multiple size
structure of near-empty regions except when I = 1, in which case the pair correlation
function m(r) is a constant different from zero up to a certain length scale (which
characterizes the size of near-empty regions) and equal to 0 for r larger than this
length scale. Increasing values of m(r) reflect increasing clustering.

For all intents and purposes the inertial particles’ pair correlation function m(r) ≈ 0
for r � η and m(r) �= 0 for r < η in our DNS when St < O(1) (see figure 4a where
m(r) is obtained from differentiation of rm(r) as in other such figures here). In
figure 4(b) we plot the pair correlation functions m(r) of zero-acceleration points and
zero-velocity points (in the frame where the mean fluid flow is zero) obtained from
our DNS. Zero-velocity points are more clustered than zero-acceleration points as
the pair correlation functions (and therefore also m(r)) of the zero-velocity points are
larger by one order of magnitude than those of zero-acceleration points. Following
the results of § 4, we plot the pair correlation function of inertial particles for the case
which corresponds with maximum values of m(r) for r < η (St = 1.9) and find that it
coincides quite closely with the pair correlation function of zero-acceleration points
(see figure 4c). This result is in agreement with figure 2 where the remarkable spatial
correlation between the spatial distributions of inertial particles and zero-acceleration
points is shown directly.

6. Removing the large-scale sweeping of small scales
It is not possible to remove from the DNS turbulence the large-scale sweeping of

small scales and the clustering of zero-acceleration points, so we now use a KS of
two-dimensional homogeneous turbulence with a −5/3 power-law energy spectrum
where the flow is synthesized in such a way that the sweeping and the acceleration
clustering are absent by construction. The point of this exercise is to study turbulent
clustering of inertial particles in the absence of such sweeping and clustering as the
clustering of inertial particles seems to mirror that of zero-acceleration points via
large-scale sweeping.
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In our KS we use two-dimensional turbulent-like velocity fields (see FV for fuller
details)

u =

Nk∑
n=1

An cos(kn · x + ωnt) + Bn sin(kn · x + ωnt) (6)

where Nk is the number of modes, and the directions and orientations of An and
Bn are chosen randomly and uncorrelated with the directions and orientations of
all other wave modes but perpendicular to kn. The distribution of wavenumbers is
geometric, specifically

kn ≡ |kn| = k1

(
kNk

k1

) n−1
Nk−1

.

The velocity field is incompressible by construction, and also statistically stationary,
homogeneous and isotropic as shown by FV and references therein. The amplitudes
of the vectors An and Bn are determined from the energy spectrum E(kn) prescribed
to be of the form

E(k) =
u′2

(L/2π)2/3
k−5/3 (7)

in the range 2π/L = k1 � k � kNk
= 2π/η, and E(k) = 0 otherwise. Following FV,

Osborne, Vassilicos & Haigh (2005) and Osborne et al. (2006), we set ωn = λ
√

k3
nE(kn),

and test the dependence of our results on the dimensionless parameter λ (which
controls the degree of unsteadiness of the turbulent-like flow) and on L/η.

Note that time scales which take some account of the large-scale sweeping
correspond to frequencies u′kn rather than ωn = λ

√
k3

nE(kn) which do not (see
Osborne et al. 2005). Also, there are no dynamics in KS, and in particular no
provision for large-scale Fourier modes to advect small-scale ones. The idea behind
KS is to synthesize a velocity field which can be thought of as an approximate
ultimate result representative of some of the would-be turbulence dynamics in that it
is incompressible, unsteady and incorporates some realistic statistics such as energy
spectra. Even without any realistic representation of large-scale sweeping, KS contains
enough information to produce good statistics of single and pairs of fluid elements
(see Osborne et al. 2005, 2006 and references therein). Without large-scale sweeping,
however, the arguments of § 4 would suggest that KS cannot reproduce clustering of
inertial particles.

First, we confirm that the sweeping is indeed absent in KS because the scaling
(4) does not hold. What seems to hold instead is V ′

a/u
′ ∼ (L/η)−1/3 (see figure 3b).

This scaling is the same as that found by Goto et al. (2005) for V ′
s , the r.m.s. of the

velocities V s of velocity stagnation points, and suggests that zero-acceleration points
tend to move increasingly slowly relative to large-scale motions as L/η increases.

Secondly, we find that KS zero-acceleration points are uniformly distributed in
space for all the values of λ (λ = 0, 0.5, 5) and L/η that we tried. This is confirmed
by the pair correlation function m(r) of zero-acceleration points which is found to be
close to zero for all values of r between η and L (see figure 5a).

Surprisingly, however, inertial-particle position fields starting from initial uniformity
do nevertheless develop well-defined near-empty spaces as time progresses, and
furthermore, as with our DNS results, the locations of these near-empty spaces
at given integration times (long enough compared to τp) are the same for all Stokes
numbers tried (see figure 6) but their average size increases with increasing Stokes
number (see Chen, Vassilicos & Fung 2006 for quantitative details and also Falkovich
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Figure 5. Two-dimensional KS, L/η = 1000. (a) m(r) for zero-acceleration points (·) and
for zero-velocity points (�); λ = 0.5. (b) m(r) of inertial particles with St = 1.6. �, λ = 0;
©, λ = 0.5; �, λ = 5.0.
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Figure 6. Particle distributions in two-dimensional KS turbulent-like velocity field.
L/η = 1000, λ = 0.5. Box size is 2L. (a) St = 0.1; (b) St = 0.8; (c) St = 6.4.

et al. 2003). This clustering occurs for values of λ that are small enough; for large
values of λ (significantly larger than 5) clustering does not occur and the inertial
particles remain uniformly distributed. These visual results are confirmed by the pair
correlation function m(r) of inertial particles which takes largest values for λ = 0,
much smaller albeit significantly non-zero values for λ = 0.5 and values even smaller
for λ = 5 (see figure 5b).

In our KS we find that as L/η increases, 〈|ω|2〉p/〈|s|2〉p tends from below towards
2 with a rate of convergence which is faster for larger values of λ. As with our DNS
results, the generation of near-empty spaces once again cannot be fully understood in
terms of inertial particles escaping high-vorticity regions because near-empty spaces
appear at as high values of L/η as we have tried when λ is not too large.

7. Persistent velocity stagnation points
So what causes clustering of inertial particles in KS? In figure 7 we plot velocity

stagnation points (zero velocity in the frame where the mean flow is zero) and inertial
particles at a time chosen long enough compared to τp . This figure comprises two
plots, one for λ = 0.5 and one for λ = 0 (Chen et al. 2006 show that zero-acceleration
points where the velocity is not zero exist in two-dimensional KS when λ = 0 and
the velocity field is frozen; they are inflection points on streamlines where a velocity
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extremum also occurs). In both cases, it is striking how inertial particles cluster in such
a way as to avoid velocity stagnation points. One might say that inertial particles and
velocity stagnation points anti-cluster. The clustering of velocity stagnation points is
confirmed by their significantly non-zero values of m(r) (see figure 5a) irrespective
of the value of λ. Figure 8 shows two plots of inertial particles superimposed on
the magnitudes of streamfunction, contours of which are streamlines. It is clear that
inertial particles congregate where the average streamline curvature seems to be
characteristically small and keep away from regions where the average streamline
curvature is characteristically large. Streamline curvature is indeed largest in the
vicinity of velocity stagnation points, and it may therefore not be too surprising to
find that velocity stagnation points cluster where streamline curvature is relatively
large. The behaviour observed in figures 7 and 8 is consistent with inertial particles
being centrifugally flung out of regions of high streamline curvature near velocity
stagnation points. This mechanism is reminiscent of the one proposed by Maxey &
Corrsin (1986) and Maxey (1987) to explain the effects that turbulence can have on
particle settling velocities. It requires the stagnation points to be persistent enough,
which they are for small enough λ because, in this limit, they move slowly compared
to u′ (see Goto et al. 2005 and Osborne et al. 2006; in KS V ′

s /u
′ ∼ λ) and because they

last long (see Osborne et al. 2006 who present an argument showing that the average
life-time of velocity stagnation points scales with the integral time scale). Indeed, no
particle clustering is observed when λ is large enough for a given value of L/η.

We would expect the centrifugal effect of highly curved streamlines around velocity
stagnation points to exist in real high-Reynolds-number turbulence as it does in KS, in
particular because these stagnation points are increasingly persistent with increasing
Reynolds number as demonstrated by Goto et al. (2005) and Osborne et al. (2006).
However, our DNS results do not reveal a clear imprint of this effect on particle
clustering. Instead, our DNS results strongly suggest that inertial-particle clustering
reflects the clustering of acceleration stagnation points.

GV have shown that the number density of zero-acceleration points scales as
(L/η)d (d = 2, 3 for two and three dimensions respectively) whereas the number
density of zero-velocity points (irrespective of frame of reference) scales as (L/η)Ds

where p + 2Ds/d = 3 and p is the exponent of the power-law energy spectrum
(see also Davila & Vassilicos 2003). There are therefore many more zero-acceleration
points than zero-velocity points and Goto et al. (2005) have argued that, typically,
zero-velocity points in the frame of reference where the mean fluid flow vanishes tend
to become slow-moving zero-acceleration points. The persistence of these points is
partly reflected in that, as a consequence, (∂/∂t)u = 0 at these points in that frame.
The remaining zero-acceleration points are not zero-velocity points.

These remaining zero-acceleration points are by far more numerous than the other
zero-acceleration points and than zero-velocity points. It is therefore natural to expect
the effect of their clustering on inertial-particle clustering to dominate over any effect
that the persistent zero-velocity points may have. Of course, this is not to say that
persistent zero-velocity points may not have an effect on other aspects of inertial-
particle dispersion such as turbulent diffusivities and settling velocities.

8. Conclusion
In high-Reynolds-number two-dimensional turbulence with −5/3 power-law energy

spectrum, stagnation points appear in clusters. Their pair correlation functions (see
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(a) (b)

Figure 7. Spatial distribution of inertial particles (St = 1.6) (in blue) and zero-velocity points
(in red) in two-dimensional KS. L/η = 1000. Box size is 2L. (a) λ = 0, (b) λ = 0.5.

(a) (b)

Figure 8. Spatial distribution of inertial particles (blue dots) against a background of
iso-streamfunction contours in two-dimensional KS. L/η = 1000. Box size is 2L. (a) λ = 0,
(b) λ = 0.5.

figure 4b) indicate that velocity stagnation points are more clustered than acceleration
stagnation points.

Inertial particles in such turbulence also cluster, and their clustering reflects that of
acceleration stagnation points for all Stokes numbers smaller than T/τη. Acceleration
stagnation points and small inertial particles are swept by large-scale motions in
such a way that inertial particles move away from points of non-zero acceleration
towards acceleration stagnation points. In KS where large-scale sweeping is absent
and where acceleration points do not cluster, inertial particles do nevertheless cluster
as a result of the repelling action of velocity stagnation-point clusters. This repelling
action has a negligible effect on inertial-particle clustering in high-Reynolds-number
two-dimensional DNS turbulence.

It will be important to carry out studies with non-zero gravity for mixtures of
different Stokes number particles (see Ghosh et al. 2005), and to take into account,
in such studies, the fact that most eddies/vortices in turbulence are not isolated
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but clustered. Indeed, the fact that eddies/vortices are clustered is rarely taken
into account in studies of enhanced coalescence and precipitation, see for example
Ghosh et al. (2005). Vaillancourt & Yau (2000) caution against droplet clustering
mechanisms for explaining droplet spectral broadening in warm clouds because the
Stokes numbers of cloud droplets are usually too small for them to be flung out of
individual vortices and because the resulting concentration fluctuations may not be
persistent enough in time. This caution ignores the findings of our present paper,
i.e. that inertial particles can cluster as a result of the clustering of zero-acceleration
points even when their Stokes number is small (see figure 1a, b), and that the large
scales sweep zero-acceleration points and inertial particles together thus implying the
kind of persistence in time which might well cause droplet spectral broadening to
occur as a result of clustering.

L. C. and S.G. acknowledge financial support from the Hong Kong Research Grants
Council under grant number HK-RGC 601203 and the 21st Century COE Program
in Kyoto University for Research and Education on Complex Functional Mechanical
Systems.
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